Seneors报告 Microsoft Word-sensors-676510 . docx-2020年

VIP文档

ID:28446

阅读量:0

大小:0.55 MB

页数:24页

时间:2023-01-07

金币:10

上传者:战必胜
Sensors2020,20,38 1;doi:10.3390/s20020381 www.mdpi.com/journal/sensors
Article
ANovelEvidenceConflictMeasurementforMulti
SensorDataFusionBasedontheEvidenceDistance
andEvidenceAngle
ZhanDeng*andJianyuWang
SchoolofAutomation,NanjingUniversityofScienceandTechnology,Nanjing210094,China,
wangjyu@njust.edu.cn
* Correspondence:ZhanDeng@njust.edu.cn
Received:9December2019;Accepted:8January2020;Published:9January2020
Abstract:Asanimportantmethodforuncertaintymodeling,Dempster–Shafer(DS)evidencetheory
has been widely used in practical applications. However, the results turned out to be almost
counterintuitivewhenfusingthedifferentsourcesofhighlyconflictingevidencewithDempster’s
combination rule. In previous researches, most of them were mainly dependent
on the conflict
measurementmethodbetweentheevidencerepresentedbytheevidencedistance.However,itis
inaccuratetocharacterizetheevidenceconflictonlythroughtheevidencedistance.Toaddressthis
issue, we comprehensively consider the impacts of the evidence distance and evidence angle on
conflictsinthispaper,andpropose
anewmethodbasedonthemutualsupportdegreebetweenthe
evidencetocharacterizetheevidence conflict.First,theHellingerdistancemeasurementmethodis
proposedtomeasurethedistancebetweentheevidence,andthesinevalueofthePignisticvector
angleisusedto characterizethe anglebetween the evidence.The
evidencedistanceindicatesthe
dissimilaritybetween the evidence,andtheevidence anglerepresentsthe inconsistency between
the evidence. Next, two methods are combined to get a new method for measuring the mutual
support degree between the evidence. Afterward, the weight of each evidence is determined by
using the mutual support
degree between the evidence. Then, the weights of each evidence are
utilized to modify the original evidence to achieve the weighted average evidence. Finally,
Dempster’scombinationruleisusedforfusion.Somenumericalexamplesaregiventoillustratethe
effectivenessandreasonabilityfortheproposedmethod.
Keywords: Dempster–Shafer evidence theory; conflict measurement; mutual support degree;
Hellingerdistance;Pignisticvectorangle
1.Introduction
Inpracticalapplications,mostinformationacquisitionisdonebysensors.Duetothecomplexity
ofthetarget,thedataprovidedbyasinglesensormaynotbesufficienttoobtainalloftheinformation
desiredfordatafusion,providingalltheinformationoftargetestimationwithmultiplesensorsis,
therefore, often required. However, the data derived from multiple sensors could be uncertain or
evenconflicting.Howtodealwithuncertaininformationeffectivelyhasbeenpaidmuchattention.
Dempster–Shafer (DS) evidence theory is a powerful tool to represent and deal with uncertain
information. It has been widely used in practical
problems related to uncertainty modeling and
reasoning, such as information fusion [1–4], fault diagnosis [5–11], decisionmaking [12–16], risk
assessment[17–21],multicriteriadecisionmaking[22,23],andpatternrecognition[24–27].
DSevidencetheory,alsocalledtheoriesofbelieffunctions,wasfirstlyproposedbyDempsterin
1967[28]andfurtherdevelopedby
Shaferin1976[29].DSevidencetheorycannotonlyeffectively
express stochastic uncertainty information, but can also express incomplete and subjective
资源描述:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭