Seneors报告 基于流量聚合的NIDS个性化网络数据集生成框架-2022年

VIP文档

ID:28548

阅读量:0

大小:1.18 MB

页数:23页

时间:2023-01-07

金币:10

上传者:战必胜

 
Citation: Velarde-Alvarado, P.;
Gonzalez, H.; Martínez-Peláez, R.;
Mena, L.J.; Ochoa-Brust, A.;
Moreno-García, E.; Félix, V.G.; Ostos,
R. A novel framework for generating
personalized network datasets for
NIDS, based on traffic aggregation.
Sensors 2022, 22, 1847. https://
doi.org/10.3390/s22051847
Academic Editors: Alexios Mylonas
and Nikolaos Pitropakis
Received: 30 December 2021
Accepted: 6 February 2022
Published: 26 February 2022
Publishers Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-
iations.
Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses/by/
4.0/).
sensors
Article
A Novel Framework for Generating Personalized Network
Datasets for NIDS Based on Traffic Aggregation
Pablo Velarde-Alvarado
1,†
, Hugo Gonzalez
2,†
, Rafael Martínez-Peláez
3
, Luis J. Mena
4,
* ,
Alberto Ochoa-Brust
5
, Efraín Moreno-García
6
, Vanessa G. Félix
4
and Rodolfo Ostos
4
1
Unidad Académica de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit,
Tepic 63000, Mexico; pvelarde@uan.edu.mx
2
Academia de Tecnologías de la Información y Telemática, Universidad Politécnica de San Luis Potosí,
San Luis Potosí 78363, Mexico; hugo.gonzalez@upslp.edu.mx
3
Facultad de Ingenierías y Tecnologías, Universidad De La Salle Bajío, Av. Universidad 602,
León 37150, Mexico; rmartinezp@delasalle.edu.mx
4
Unidad Académica de Computación, Universidad Politécnica de Sinaloa, Ctra. Libre Mazatlán Higueras
Km 3, Mazatlán 82199, Mexico; vfelix@upsin.edu.mx (V.G.F.); rostos@upsin.edu.mx (R.O.)
5
Facultad de Ingeniería Mecánica y Eléctrica, Universidad de Colima, Av. Universidad 333,
Colima 28040, Mexico; aochoa@ucol.mx
6
Dirección de Posgrado e investigación, Instituto Tecnológico de Tepic, Tepic 63175, Mexico;
emoreno@ittepic.edu.mx
* Correspondence: lmena@upsin.edu.mx
These authors contributed equally to this work.
Abstract:
In this paper, we addressed the problem of dataset scarcity for the task of network intrusion
detection. Our main contribution was to develop a framework that provides a complete process for
generating network traffic datasets based on the aggregation of real network traces. In addition, we
proposed a set of tools for attribute extraction and labeling of traffic sessions. A new dataset with
botnet network traffic was generated by the framework to assess our proposed method with machine
learning algorithms suitable for unbalanced data. The performance of the classifiers was evaluated in
terms of macro-averages of F1-score (0.97) and the Matthews Correlation Coefficient (0.94), showing
a good overall performance average.
Keywords:
intrusion detection; network security; traffic generation; machine learning; unbalanced
dataset; botnet detection
1. Introduction and Motivation
Nowadays, cybersecurity plays a fundamental role to ensure the usability and integrity
of the information technology and telecommunication infrastructure. These technologies
are fundamental for the common activities of organizations, enterprises, and individuals.
As an example, using perimeter security it is possible to implement a layered approach
protection, with the objective to identify and stop cyber attacks or network anomalies in the
inbound and outbound network traffic using network monitor techniques over a network
segment. In recent years, Network Intrusion Detection Systems (NIDS), based on anomalies
(Anomay-based NIDS), had been incorporated machine learning (ML) and deep learning
models to detect malicious network traffic patterns with excellent results [1,2].
NIDS and Intrusion Prevention Systems (IPS) are part of the defense strategies from
cybercriminal tactics and attacks. However, this task to be efficient requires some desirable
features in the NIDS, as such as: (1) fault tolerant; (2) minimum of human intervention
on the administration of the devices; (3) avoid excessive work over system resources;
(4) detect significant deviations from acceptable behavior; (5) high precision to minimize
false positives and false negatives; (6) detect all kinds of patterns and sophisticated attacks;
and (7) quick to detect intrusions and response effective to reduce possible damages [3,4].
Sensors 2022, 22, 1847. https://doi.org/10.3390/s22051847 https://www.mdpi.com/journal/sensors
资源描述:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭