智能建筑用电量预测学习算法中漂移检测方法的集成分析

ID:38920

大小:2.48 MB

页数:14页

时间:2023-03-14

金币:2

上传者:战必胜
Citation: Mariano-Hernández, D.;
Hernández-Callejo, L.; Solís, M.;
Zorita-Lamadrid, A.; Duque-Pérez,
O.; Gonzalez-Morales, L.; García, F.S.;
Jaramillo-Duque, A.; Ospino-Castro,
A.; Alonso-Gómez, V.; et al. Analysis
of the Integration of Drift Detection
Methods in Learning Algorithms for
Electrical Consumption Forecasting
in Smart Buildings. Sustainability
2022, 14, 5857. https://doi.org/
10.3390/su14105857
Academic Editor: Antonio Caggiano
Received: 6 April 2022
Accepted: 10 May 2022
Published: 12 May 2022
Publishers Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-
iations.
Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses/by/
4.0/).
sustainability
Article
Analysis of the Integration of Drift Detection Methods in
Learning Algorithms for Electrical Consumption Forecasting in
Smart Buildings
Deyslen Mariano-Hernández
1,2,
* , Luis Hernández-Callejo
2,
* , Martín Solís
3
, Angel Zorita-Lamadrid
4
,
Oscar Duque-Pérez
4
, Luis Gonzalez-Morales
5
, Felix Santos García
6
, Alvaro Jaramillo-Duque
7
,
Adalberto Ospino-Castro
8
, Victor Alonso-Gómez
9
and Hugo J. Bello
10
1
Área de Ingeniería, Instituto Tecnológico de Santo Domingo, Santo Domingo 10602, Dominican Republic
2
ADIRE-ITAP, Departamento Ingeniería Agrícola y Forestal, Universidad de Valladolid, 42004 Soria, Spain
3
Tecnológico de Costa Rica, Cartago 30101, Costa Rica; marsolis@itcr.ac.cr
4
ADIRE-ITAP, Departamento de Ingeniería Eléctrica, Universidad de Valladolid, 47002 Valladolid, Spain;
zorita@eii.uva.es (A.Z.-L.); oscar.duque@eii.uva.es (O.D.-P.)
5
Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones–DEET, Facultad de Ingeniería,
Universidad de Cuenca, Cuenca 010107, Ecuador; luis.gonzalez@ucuenca.edu.ec
6
Área de Ciencias Básicas y Ambientales, Instituto Tecnológico de Santo Domingo,
Santo Domingo 10602, Dominican Republic; felix.santos@intec.edu.do
7
GIMEL, Departamento de Ingeniería Eléctrica, Universidad de Antioquia, Medellín 050010, Colombia;
alvaro.jaramillod@udea.edu.co
8
Facultad de Ingeniería, Universidad de la Costa, Barranquilla 080002, Colombia; aospino8@cuc.edu.co
9
Departamento de Física, Universidad de Valladolid, 47011 Valladolid, Spain; victor.alonso.gomez@uva.es
10
Departamento de Matemática Aplicada, Universidad de Valladolid, 47002 Valladolid, Spain;
hugojose.bello@uva.es
* Correspondence: deyslen.mariano@intec.edu.do (D.M.-H.); luis.hernandez.callejo@uva.es (L.H.-C.);
Tel.: +1-809-949-1227 (D.M.-H.); +34-975-129-418 (L.H.-C.)
Abstract:
Buildings are currently among the largest consumers of electrical energy with considerable
increases in CO
2
emissions in recent years. Although there have been notable advances in energy
efficiency, buildings still have great untapped savings potential. Within demand-side management,
some tools have helped improve electricity consumption, such as energy forecast models. However,
because most forecasting models are not focused on updating based on the changing nature of
buildings, they do not help exploit the savings potential of buildings. Considering the aforementioned,
the objective of this article is to analyze the integration of methods that can help forecasting models
to better adapt to the changes that occur in the behavior of buildings, ensuring that these can be
used as tools to enhance savings in buildings. For this study, active and passive change detection
methods were considered to be integrators in the decision tree and deep learning models. The results
show that constant retraining for the decision tree models, integrating change detection methods,
helped them to better adapt to changes in the whole building’s electrical consumption. However, for
deep learning models, this was not the case, as constant retraining with small volumes of data only
worsened their performance. These results may lead to the option of using tree decision models in
buildings where electricity consumption is constantly changing.
Keywords:
drift detection; electrical consumption forecasting; energy forecasting; machine learning;
smart buildings
1. Introduction
Buildings presently produce up to 40% of worldwide energy consumption and 30% of
carbon dioxide emissions, numbers which are constantly increasing due to urbanization [
1
].
Additionally, considering the long life expectancy of buildings, it is assessed that 85–95%
of buildings that exist today will still be utilized in 2050 [
2
]. Hence, changes in energy
Sustainability 2022, 14, 5857. https://doi.org/10.3390/su14105857 https://www.mdpi.com/journal/sustainability
资源描述:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭