基于静态试探法的恶意软件目标识别

ID:23774

大小:0.29 MB

页数:29页

时间:2022-11-30

金币:20

上传者:战必胜
Malware Target Recognition via Static Heuristics
I
T. Dube
a,
, R. Raines
a
, G. Peterson
a
, K. Bauer
a
, M. Grimaila
a
, S. Rogers
b
a
Air Force Institute of Technology, Wright-Patterson AFB, OH, USA, 45433-7765
b
Sensors and Information Directorates, Air Force Research Laboratory, Wright-Patterson
AFB, OH, USA, 45433-7321
Abstract
Organizations increasingly rely on the confidentiality, integrity and availabil-
ity of their information and communications technologies to conduct effective
business operations while maintaining their competitive edge. Exploitation
of these networks via the introduction of undetected malware ultimately de-
grades their competitive edge, while taking advantage of limited network vis-
ibility and the high cost of analyzing massive numbers of programs. This ar-
ticle introduces the novel Malware Target Recognition (MaTR) system which
combines the decision tree machine learning algorithm with static heuristic
features for malware detection. By focusing on contextually important static
heuristic features, this research demonstrates superior detection results. Ex-
perimental results on large sample datasets demonstrate near ideal malware
detection performance (99.9+% accuracy) with low false positive (8.73e-4)
and false negative rates (8.03e-4) at the same point on the performance curve.
Test results against a set of publicly unknown malware, including potential
advanced competitor tools, show MaTR’s superior detection rate (99%) ver-
sus the union of detections from three commercial antivirus products (60%).
The resulting model is a fine granularity sensor with potential to dramatically
augment cyberspace situation awareness.
Keywords: malware detection, information assurance, decision trees
I
Patent pending.
Corresponding author, phone (937) 255-3636 x4690, FAX (937) 904-7979,
e-mail: thomas.dube@afit.edu
Preprint submitted to Computers & Security September 30, 2011
资源描述:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭